
Gamry Electrochemistry ToolkitPy™
Echem ToolkitPy is a new Python API released for Gamry potentiostats. ToolkitPy provides a powerful way to
control your Gamry Instruments' potentiostats and other devices.

Why use ToolkitPy?
Written for Python users, ToolkitPy gives direct access
to all real-time controls available originally in The Gamry
Framework Software. Everything has been streamlined
so that you can run signals and acquire data natively
within Python. We now offer more variation in data
handling, changes to signal types, easy interfacing with
ancillary devices, and increased data point limits.

Software developers will be able to build up stand alone
programs that are just as powerful as our own bundled
software or write custom scripts that call our
potentiostat to run in an integrated environment.
Automation is easier with ToolkitPy.

Laboratory instructors wanting to integrate
programming skills in the curriculum can have student
use ToolkitPy within integrated development
environments (IDE) such as PyCharm. Students can also
run a Gamry potentiostat and analyze the resulting data
all from one Jupyter Notebook.

We (Gamry) also use ToolkitPy to build out and create
custom scripts for our potentiostat users needing state-
of-the-art signals for pushing the boundaries of
electrochemical science. We can save you time and
create customizable code.

Python-friendly experimental control
Historically, our potentiostats are controlled by the
Gamry Framework Software. The code that controls
experiments (or scripts) in Gamry Framework is publicly
available and can be altered by any user. These scripts
are written in procedural language based on function

calls and sequential execution of statements called
EXPLAIN™. Users can create a custom experiment in
EXPLAIN that can be controlled in Framework. This has
always been available to users as a simple yet powerful
customization option. However, it requires investing
time in EXPLAIN, which may not yield a good return
when compared to Python. ToolkitPy re-invests that
time into learning API calls that can integrate with
existing Python code. This allows you to more easily
create scripts that both control the instrument and
analyze data.

Data acquisition
ToolkitPy gathers data into a NumPy array, which is a
very efficient data structure. The data array can be
exported to any file type for subsequent data
processing. Or you can also perform data manipulation
techniques post-experiment using one of the many
libraries for scientific computing in Python (NumPy,
SciPy, or Pandas).

The array can be shared with other external equipment
operating in the Python environment. Many third-party
instruments and controllers have existing Python
libraries. Scripting your experiments in ToolkitPy should
allow for seamless integration with these devices, such
as pumps, machines, cameras, etc. Depending on
compatibility, synchronized operation and automation is
possible. More interestingly, you could control your
Gamry potentiostat from within a third-party
instrument’s software so long as Python version
compatibility is maintained.

ToolkitPy data acquisition is automated. Therefore, once
run is called, a separate thread is created that
automatically pumps the data to the NumPy array. This
is a distinct difference from our more general platform,
The Electrochemistry Toolkit, where we would have to
call a Cook() to take the points out of the instrument’s
memory at a set interval.

Point limit
An individual experiment in Framework can only acquire
262144 data points. This is usually not an issue for most
types of experiments; however, certain applications,
especially neuro-stimulation, require a large number of
data points. More broadly, the data point limit is
approached when you need to record fast transients
over a long period of time. With ToolkitPy, you can
extract as many points as your RAM or hard disk can
handle*.

*Experiments run in fast mode (sampling rates faster than 100 µs) can
only record up to around 2 million points.

How ToolkitPy works
A pre-step is to import common libraries and any other
dependencies.

import time as Time
import numpy as np

Importing ToolkitPy
The first step to utilize ToolkitPy in any .py file is to
import toolkitpy with the following:

import toolkitpy as tkp

Like all libraries, toolkitpy needs to be imported to
utilize all of its functions. You do not need to import it as
“tkp”; however, that is commonly how all of our source
code imports the library. We recommend using it.

Initializing ToolkitPy
The second step required is to initialize toolkitpy in
order to use its built-in functions. Use the following
command:

tkp.toolkitpy_init("cv.py")

It is important to assign a unique string to avoid conflicts
if you are running several .py files utilizing the toolkitpy
libraries at the same time. The name of the string can be
anything as long as it's unique.

Creating a pstat object
Step three requires you to create a pstat object in order
to send commands to the Gamry potentiostat. There are

two methods to creating a pstat object, described
below.

A. Grab the first Pstat:

pstat = tkp.Pstat(“Pstat”])

This method will allow you to grab the first pstat
connected to your computer. This option is not
ideal when you have more than one pstat
connected (multi-channel potentiostat setup) and
you want to select a particular channel.

B. Create a list of pstats and grab from the list:

You can create a list of pstats by using the
enum_sections() command:

 pstat_list = tkp.enum_sections()
 print(pstat_list[0])

This will then return a List object containing the
names of the available pstats that you have
connected to your computer. It’s helpful here to
include a print() function, but not required. You
can then choose the pstat from that list by using
the unique identifier of the pstat returned in the
list:

 pstat = tkp.Pstat(pstat_list[0])

Knowing which potentiostat you are using is
important for current limits, voltage limits, or
frequency limits.

Up to this point, all we have done is acquire the
potentiostat we want to use through ToolkitPy. The next
section describes how you tell the potentiostat what to
do. Here, we use cyclic voltammetry as an example
given its universal appeal in many electrochemical
applications. But this is also where you can be creative
and build out unique and interesting commands to send
to the potentiostat.

Creating a signal
For Cyclic Voltammetry, we use the function
pstat.signal_r_up_dn_new(). Decoded, it’s shorthand
for a signal that applies a linear ramp up to a scan limit
and back down to a second scan limit, cycling in-
between. It takes all the usual arguments needed to
specify a CV experiment in Framework. Shown in Figure
1, these also include the initial E, final E, scan rate, step
size, and number of cycles.

Figure 1. Parameters available in the setup window of a cyclic
voltammetry script in the Gamry Framework software.

The complete signal is defined as the following:

signal = pstat.signal_r_up_dn([0,0.5,-
0.5,0],[.1,.1,.1],[0,0,0],0.002,1,tkp.P
STATMODE)

The first argument is a list decoded as [Initial E, Scan
Limit 1, Scan Limit 2, Final E]. The second argument is a
list of scan rates—one for each section of the triangular
wave. The third argument specifies a vertex hold, which
allows for an accumulation and strip. These are followed
by arguments for the step size, number of cycles, and a
hardware setting call to run the ramp under potential
control. This should give you a hint that the same signal
could be called under current control, or GSTATMODE.

Note: You can find a variety of signals that have been
created as templates for ToolkitPy.

Once the signal is defined, you must pass it to the
potentiostat and initialize with these two steps:

pstat.set_signal_r_up_dn(signal)
pstat.init_signal()

Note the addition of “set” (blue arrow), which
differentiates it from above.

Up to this point, the pstat knows what to do—it has a
signal to apply. We only need to wrap this inside of what
we call a curve.

Curve Initialization
Curves are data acquisition control objects and
sometimes are referred to as DTAQs. Curves dictate
stop at conditions and the data output. In this case, we
are looking for the RCV curve. The call for the curve
creation would be the following:

curve = tkp.RcvCurve(pstat,100000)

The second argument in curve specifies the maximum
size of the NumPy array. It must be greater than the
estimated number of points needed to record all data
resulting from the applied signal.

Running the Curve
The final step is to turn ON the cell switch (allows
current to flow through the system) and run the curve.
A while loop can be used to acquire the data in the
NumPy array and run common processes like writing to
a file. Or you can simply print() the data altogether. The
set of commands is below:

curve.run(True)
 while curve.running():

 data = curve.acq_data()

Utilizing both the curve and signal to create
the signal
Putting all the lines of code together would yield:

import time as Time
import numpy as np
import toolkitpy as tkp
tkp.toolkitpy_init("cv.py")
pstat_list = tkp.enum_sections()
print(pstat_list[0])
pstat = tkp.Pstat(pstat_list[0])
signal = pstat.signal_r_up_dn([0,0.5,-
0.5,0],[.1,.1,.1],[0,0,0],0.002,1,tkp.PSTATMOD
E)
pstat.set_signal_r_up_dn(signal)
pstat.init_signal()
curve = tkp.RcvCurve(pstat,100000)
pstat.set_cell(True)
curve.run(True)

while curve.running():

data = curve.acq_data()
np.savetxt("Test_tkp.csv", data,
delimiter = ',', newline = '\n', header
= ','.join(data.dtype.names),comments =
'')

del signal
del curve
del pstat

A few additional lines of code are added to save the
array to a file and delete the signal, curve, and pstat
objects. Altogether, this block of code represents the
core functionality of ToolkitPy. However, it is not
complete. Several elements such as potentiostat
hardware settings, real-time plotting, and error handling
are omitted for clarity.

Virtual Front Panel 2: A full implementation of
ToolkitPy

We recommend that users interested in ToolkitPy take
the time to experiment with our Virtual Front Panel 2
(VFP2) software. VFP2 can be installed alongside
Framework and gives users real-time control over their
Gamry Potentiostat(s). This application is intended for
use as a replacement for a hardware front panel. The
source code for this application is available to users as a
demonstration of ToolkitPy and is installed alongside
ToolkitPy.

System Information

ToolkitPy requires a Gamry potentiostat. Instruments
supported include Interface 1000/1010, Interface 5000,
Reference 600/600+/620, Reference 3000/3000AE.
Auxiliary equipment includes the IMX8/ECM8
electrochemical multiplexer and RxE 10k Rotator.
Microsoft Windows 10, 11, or higher is required as well
as a suitable programming environment for coding such
as Visual Studio Code.

Gamry's Software Suite Installer provides all necessary
files for the installation of the ToolkitPy software
development tool. It includes a Python Installer for a
curated version of Python 3.7.9 (32-bit), ToolkitPy, and
various site-package libraries such as NumPy 1.21.6
or Pyside2 5.15.2. Python Package Index (PyPI) should
not be required.

ELECTROCHEMISTRY TOOLKITPy Rev. 1.0 11/4/2024

 Copyright 1990-2024 ©Gamry Instruments, Inc.

734 Louis Drive Warminster, PA 18974 USA +215-682-9330 Fax: +215-682-9331 info@gamry.com www.gamry.com

mailto:info@gamry.com
http://www.gamry.com/

	Gamry Electrochemistry ToolkitPy™
	Written for Python users, ToolkitPy gives direct access to all real-time controls available originally in The Gamry Framework Software. Everything has been streamlined so that you can run signals and acquire data natively within Python. We now offer m...
	Software developers will be able to build up stand alone programs that are just as powerful as our own bundled software or write custom scripts that call our potentiostat to run in an integrated environment. Automation is easier with ToolkitPy.
	Laboratory instructors wanting to integrate programming skills in the curriculum can have student use ToolkitPy within integrated development environments (IDE) such as PyCharm. Students can also run a Gamry potentiostat and analyze the resulting data...
	We (Gamry) also use ToolkitPy to build out and create custom scripts for our potentiostat users needing state-of-the-art signals for pushing the boundaries of electrochemical science. We can save you time and create customizable code.

