Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium: Experimental and quantum chemical molecular dynamics approach
By Khaled, K.F.; Fadl-Allah, Sahar A. & Hammouti, B.
Published in Materials Chemistry and Physics
2009
Abstract
Three benzotriazole derivatives namely, 1-(Phenylsulfonyl)-1H-benzotriazole (PSB), 1-(3-Pyridinylsulfonyl)-1H-benzotriazole (3PSB) and 1-(2-Pyridinylsulfonyl)-1H-benzotriazole (2PSB) have been investigated for the corrosion of copper in 1 M HNO3 at different concentrations at 25 ± 1 °C using chemical (weight loss) and electrochemical (Tafel polarization method) measurements. Generally, inhibition efficiency of the investigated compounds was found to depend on the concentration and the nature of the inhibitors. Quantum chemical calculation results show that the benzotriazole ring and heteroatoms are the active sites of the three inhibitors. The adsorption behaviour of the studied inhibitors on copper surface has been studied using molecular dynamics (MD) method and density functional theory. The results indicated that the three benzotriazole derivatives could adsorb on the copper surface firmly through the benzotriazole ring and heteroatoms, the three inhibitors have excellent corrosion inhibition performance.