Search this site
English
Contact Us

Molten-Metal Electrodes for Solid Oxide Fuel Cells

By Jayakumar, A.; Vohs, J. M. & Gorte, R. J.
Published in Industrial & Engineering Chemistry Research 2010

Abstract

Molten In, Pb, and Sb were examined as anodes in solid oxide fuel cells (SOFC) that operate between 973 and 1173 K. The results for these metals were compared with those reported previously for molten Sn electrodes. Cells were operated under “battery� conditions, with dry He or N2 flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the yttria-stabilized zirconia (YSZ)-electrolyte interface. In most cases, the open-circuit voltages (OCVs) were close to that based on equilibrium between the metals and their oxides. With Sn and In, the cell impedances increased dramatically at all temperatures after drawing current due to formation of insulating, oxide barriers at the electrolyte interface. Similar results were observed for Pb at 973 and 1073 K, but the impedance remained low even after PbO formation at 1173 K because this is above the melting temperature of PbO. Similarly, the impedances of molten Sb electrodes at 973 K were low and unaffected by current flow because of the low melting temperature of Sb2O3. The potential of using molten-metal electrodes for direct-carbon fuel cells and for energy-storage systems is discussed.

Read Article » Back