Search this site
English
Contact Us

Novel alkaline water electrolysis with nickel-iron gas diffusion electrode for oxygen evolution

By Koj, Matthias; Qian, Jingcan; Turek, Thomas
Published in International Journal of Hydrogen Energy 2019

Abstract

In the present work, a novel electrolyzer concept for alkaline water electrolysis (AEL) with a gas diffusion electrode (GDE) as anode, a conventional immersed porous cathode and a state-of-the-art Zirfon™ separator is presented and compared with a conventional electrolyzer setup. Due to the utilization of a GDE in this configuration, the electrolyte is only circulated through the cathode compartment which greatly simplifies the process. The influence of the catalyst composition and the enhanced electrode surface owing to the three-dimensional porous structure of the GDE are characterized and investigated regarding the electrode performance. Furthermore, process parameters like contact pressure and differential pressure are examined and optimized. The novel process concept with a GDE as anode reveals a similar cell potential compared to a classical electrolysis cell with a Ni/Fe-coated nickel foam anode up to 400 mA cm−2 at 353 K and 32.5 wt% KOH and also exhibits relatively good electrochemical stability over time.

Read » Back