Search this site
English
Contact Us

Facile sonochemical synthesis of strontium phosphate based materials for potential application in supercapattery devices

By Iqbal, Muhammad Zahir; Khan, Abbas; Numan, Arshid; Alzaid, Meshal; Iqbal, Javed
Published in International Journal of Hydrogen Energy 2020

Abstract

Among hybrid energy storage devices, supercapattery gained profound research interest due to its ability to give high energy density while maintaining the power density and cyclic stability. Herein, novel low-cost strontium based materials are synthesized by controlled sonochemical method and subsequently calcined at various temperatures. The multiple phases of the material synergistically contributed in the electrochemical charge storage process and give high specific capacity of 220 C g−1 (as-prepared material) and 213 C g−1 (calcined at 200 °C) at 0.5 A g−1. A thorough electrochemical performance of optimized material is investigated as an electrode in asymmetric device. The supercapattery (SP2//AC) exhibits a specific capacity of 103.4 C g−1 at 0.5 A g−1 in the voltage range of 0–1.7 V. Furthermore, supercapattery offers a considerably high specific energy of 24.4 Wh kg−1 at a specific power of 425 W kg−1 and an excellent specific power of 1870 W kg−1 by maintaining specific energy at 14.5 Wh kg−1. In addition, the device retained its specific capacity to 90% after 3000 charging/discharging cycles at 1 A g−1. Strontium based materials could be proposed as an appropriate electrode material for energy storage systems.

Read » Back