Search this site
English
Contact Us

Optimization of electrocatalyst performance of platinum

By Abdullah, Norulsamani; Saidur, R.; Zainoodin, Azran Mohd; Aslfattahi, Navid
Published in Journal of Cleaner Production Journal of Cleaner Production 2020

Abstract

Fuel cell produces clean sources of energy and yielding can be improved using emerging material (MXene) in electrocatalysis performance in a fuel cell system. However, MXene in electrocatalysis area for fuel cell is not discovered yet. Therefore, the aim of this study is to enhance the direct methanol fuel cell (DMFC) electrocatalyst performance using combination of bimetallic PtRu and MXene. Optimization is carried out using response surface methodology (RSM). Composition of MXene, Nafion content and methanol concentration are used as factors (input) and current density is used as a response (output) for the optimization analysis. A cyclic voltammetry (CV) is used to measure the current density. RSM generates optimum factors with MXene composition 78.90 wt%, Nafion content 19.71 wt% and methanol concentration of 2.82M. The optimum response is predicted to be 186.59mA/mgPtRu. The validation test is carried out and the result shows that the average current density is 187.05mA/mgPtRu. PtRu/MXene electrocatalyst produces 2.34 times higher current density compared to PtRu/C commercial electrocatalyst. This indicates that MXene has high potential as a nanocatalyst for cleaner energy production through the fuel cell.

Read » Back