Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion
By Khaled, K.F.
Published in Materials Chemistry and Physics
2010
Abstract
A molecular dynamics study for the adsorption of three benzimidazole derivatives and their inhibition characteristics was studied using chemical (weight loss) and electrochemical measurements (potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). Electrochemical measurements results revealed that the inhibition efficiencies increased with the concentration of inhibitors. Results obtained from weight loss, dc polarization and ac impedance measurements are in reasonably good agreement and show increased inhibitor efficiency with increasing inhibitor concentration. The molecular dynamics calculations showed that the higher the binding energy between the inhibitor and metal surface, the higher the inhibition efficiency. Also, the higher the adsorption energy, the higher the inhibition efficiency. The molecular dynamics study revealed that the benzimidazole ring as well as the side chain are the active sites in these inhibitors and they can absorb on Fe surface by donating electrons to Fe d-orbital.