The influence of aluminium surface pretreatment on the corrosion stability and adhesion of powder polyester coating
By Bajat, J.B.; Popić, J.P. & Mišković-Stanković, V.B.
Published in Progress in Organic Coatings
2010
Abstract
One of the most important factors in corrosion prevention by protective coatings is the coating adhesion loss under environmental influence. Thus, adhesion strength is often used when characterizing protective properties of organic coatings on a metal substrate. In order to improve the adhesion of organic coating the metal substrate is often pretreated in some way. In this work, the adhesion of polyester coatings on differently pretreated aluminium surface (by anodizing, with and without sealing, by phosphating and by silane film deposition) was examined. The dry and wet adhesion of polyester coatings were measured by a direct pull-off standardized procedure, as well as indirectly by NMP test. It was shown that under dry test conditions all polyester coatings showed very good adhesion, but that aluminium surface pretreated by silane film showed superior adhesion. The overall increase of wet adhesion for polyester coating on aluminium pretreated by silane film was maintained throughout the whole investigated time period. The different trends in the change of adhesion of polyester coatings were observed for different aluminium pretreatments during exposure to the corrosive agent (3% NaCl solution). The highest adhesion reduction was obtained for polyester coating on aluminium pretreated with phosphate coating. The corrosion stability of polyester coated aluminium was investigated by electrochemical impedance spectroscopy in 3% NaCl solution. The results confirmed good protective properties of polyester coating on aluminium pretreated with silane film, i.e. greater values of pore resistance and smaller values of coating capacitance were obtained in respect to other protective systems, whereas charge-transfer resistance and double-layer capacitance were not measurable during 2 months of exposure to a corrosive agent.