Search this site
English
Contact Us

Solid electrolyte based on silicate matrix functionalised with tetraalkylammonium group solvated by organic solvent

By Poling, Steven A; Nelson, Carly R; Sutherland, Jacob T & Martin, Steve W
Published in Electrochimica Acta 2003

Abstract

Solid electrolyte composed of hybrid organic–inorganic silicate matrix functionalised with tetraalkylammonium group, solvated by viscous organic polar solvent (propylene carbonate (PC) or sulpholane (TMS)), was prepared by the sol–gel method under controlled drying conditions. Tetramethoxysilane (TMOS), N-trimethoxysilylpropyl-N,N,N-tributylammonium chloride (TMOSPTBACl) and organic solvent were principal sol components. Gel formed within 2 h and 2 days depending on substrate ratio and the solvent additive. The obtained material was transparent and it loosed about 15% of its mass during first 30 days of ageing. It was characterised by thermogravimetry (TGA), differential scanning calorimetry (DSC), NMR, FT-IR spectroscopy, small angle X-ray scattering (SAXS), and impedance spectroscopy. The transport of redox active molecules was studied by electrochemical methods. The porosity of samples dried in supercritical CO2 was also estimated. The shape of TGA and DSC curve appeared to be similar to that of pure solvent. The IR spectra indicated the silicate network formation with some silanol groups left. The NMR spectrum of the solution used to wash crushed sample indicated that all organic substrate is embedded in silicate matrix. The magnitude of electrical conductivity was close to 10-4 to 10-5 S cm-1, i.e. least more than one order of magnitude larger than that of TMOS based silicate matrix modified with a pure solvent. This conductivity is high enough for electrochemical experiments. Both conductivity and diffusion coefficient of redox probe-ferrocene (Fc) depended on time elapsed after gelation. Their most substantial decrease was observed during first 10 days after gelation and it correlated with mass loss.

Read Article » Back