Search this site
English
Contact Us

Corrosion and ion release behavior of Cu/Ti film prepared via physical vapor deposition in vitro as potential biomaterials for cardiovascular devices

By Liu, Hengquan; Zhang, Deyuan; Shen, Feng; Zhang, Gui & Song, Shenhua
Published in Applied Surface Science 2012

Abstract

Cu/Ti films of various Cu/Ti ratios were prepared on a TiNi alloy via vacuum arc plasma deposition. The phase composition, structure, and concentration of elements were investigated via X-ray diffraction and X-photoelectron energy spectrum. The hemolysis ratio and platelet adhesion of the different films were characterized to evaluate blood compatibility. The corrosion and ion release behavior were investigated via a typical immersion test and electrochemical method. The growth of endothelial cells (ECs) was investigated, and methylthiazolyte-trazolium method was employed to evaluate the effect of Cu2+. The sophisticated films showed good compatibility. However, with increasing quality ratio of Cu/Ti, the hemolysis ratio increased, and some platelets started to break slightly. The Cu2+ release was gradually stabilized. The open circuit potential of the Cu/Ti film-modified samples was lower than that of the TiNi substrate. The polarization test result indicates that the passivation stability performance of Cu/Ti film samples is less than the TiNi substrate, and is favorable to Cu2+ release. The adhesion and proliferation of ECs would be inhibited with 10 wt.% Cu concentration of the film, and ECs would undergo apoptosis at >50 wt.% concentration. A Cu/Ti film with good compatibility and anti-endothelialization has potential applications for special cardiovascular devices.

Read Article » Back