Search this site
English
Contact Us

Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes

By Iandolo, Beniamino; Wickman, Bjorn; Seger, Brian; Chorkendorff, Ib; Zoric, Igor & Hellman, Anders
Published in Phys. Chem. Chem. Phys. The Royal Society of Chemistry 2014

Abstract

Functionalization of transition metal oxides using metallic nanoparticles is an interesting route towards efficient photoelectrochemical hydrogen production via water splitting. Although an enhanced photocurrent in photoanodes upon functionalization with metallic nanostructures has been observed in several studies, to the best of our knowledge no measurements of the Faradaic efficiency (FE) of the oxygen evolution reaction (OER) have been reported for such systems. This work characterizes the FE on a model system consisting of ultra-thin films of hematite (Fe2O3) sensitized with Ti/Au nanodisks. Compared to bare hematite references, sensitized samples showed significantly enhanced photocurrents as well as O2 evolution. Experimental evidence suggests that the observed enhancement was not due to photocatalytic activity of the nanodisks. The FE has been determined to be 100%, within the experimental errors, for both sensitized and reference samples. Also, this work demonstrates that the sensitized samples were stable for at least 16 hours photocurrent testing. The concepts shown in this work are generally applicable to any situation in which a semiconductor has its water splitting performance enhanced by metallic nanostructures.

Read Article » Back