Search this site
English
Contact Us

A Lithographically Patterned Capacitor with Horizontal Nanowires of Length 2.5 mm

By Yan, Wenbo; Thai, Mya Le; Dutta, Rajen; Li, Xiaowei; Xing, Wendong & Penner, Reginald M.
Published in ACS Applied Materials & Interfaces 2014

Abstract

A symmetrical hybrid capacitor consisting of interdigitated, horizontal nanowires is described. Each of the 750 nanowires within the capacitor is 2.5 mm in length, consisting of a gold nanowire core (40 × ≈200 nm) encapsulated within a hemicylindrical shell of δ-phase MnO2 (thickness = 60 -220 nm). These Au@δ-MnO2 nanowires are patterned onto a planar glass surface using lithographically patterned nanowire electrodeposition (LPNE). A power density of 165 kW/kg and energy density of 24 Wh/kg were obtained for a typical nanowire array in which the MnO2 shell thickness was 68 ± 8 nm. Capacitors incorporating these ultralong nanowires lost ≈10% of their capacity rapidly, during the first 20 discharge cycles, and then retained 90% of their maximum capacity for the ensuing 6000 cycles. The ability of capacitors consisting of ultralong Au@δ-MnO2 nanowires to simultaneously deliver high power and high capacity with acceptable cycle life is demonstrated.

Read Article » Back