Investigation of Stepwise Covalent Synthesis on a Surface Yielding Porphyrin-Based Multicomponent Architectures
By Schmidt, Izabela; Jiao, Jieying; Thamyongkit, Patchanita; Sharada, Duddu S.; Bocian, David F. & Lindsey, Jonathan S.
Published in The Journal of Organic Chemistry
2006
Abstract
Porphyrins have been shown to be a viable medium for use in molecular-based information storage applications. The success of this application requires the construction of a stack of components (“electroactive surface/tether/charge-storage molecule/linker/electrolyte/top contact�) that can withstand high-temperature conditions during fabrication (up to 400 °C) and operation (up to 140 °C). To identify suitable chemistry that enables in situ stepwise synthesis of covalently linked architectures on an electroactive surface, three sets of zinc porphyrins (22 altogether) have been prepared. In the set designed to form the base layer on a surface, each porphyrin incorporates a surface attachment group (triallyl tripod or vinyl monopod) and a distal functional group (e.g., pentafluorophenyl, amine, bromo, carboxy) for elaboration after surface attachment. A second set designed for in situ dyad construction incorporates a single functional group (alcohol, isothiocyanato) that is complementary to the functional group in the base porphyrins. A third set designed for in situ multad construction incorporates two identical functional groups (bromo, alcohol, active methylene, amine, isothiocyanato) in a trans configuration (5,15-positions in the porphyrin). Each porphyrin that bears a surface attachment group was found to form a good quality monolayer on Si(100) as evidenced by the voltammetric and vibrational signatures. One particularly successful chemistry identified for stepwise growth entailed reaction of a surface-tethered porphyrin-amine with a dianhydride (e.g., 3,3',4,4'-biphenyltetracarboxylic dianhydride), forming the monoimide/monoanhydride. Subsequent reaction with a diamine (e.g., 4,4'-methylene-bis(2,6-dimethylaniline)) gave the bis(imide) bearing a terminal amine. Repetition of this stepwise growth process afforded surface-bound oligo-imide architectures composed of alternating components without any reliance on protecting groups. Taken together, the ability to prepare covalently linked constructs on a surface without protecting groups in a stepwise manner augurs well for the systematic preparation of a wide variety of functional molecular devices.