Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives
By Khaled, K.F.
Published in Applied Surface Science
2006
Abstract
The corrosion inhibition of mild steel in 0.5 M hydrochloric acid solutions by some new hydrazine carbodithioic acid derivatives namely N′-furan-2-yl-methylene-hydrazine carbodithioic acid (A), N′-(4-dimethylamino-benzylidene)-hydrazine carbodithioic acid (B) and N′-(3-nitro-benzylidene)-hydrazine carbodithioic (C) was studied using chemical (weight loss) and electrochemical (potentiodynamic and electrochemical impedance spectroscopy, EIS) measurements. These measurements show that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follow the order C > B > A. Polarization studies show that these compounds act as mixed type inhibitors in 0.5 M HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. The electronic properties of these inhibitors, obtained using PM3 semi-empirical self-consistence field method, have been correlated with their experimental efficiencies using non-linear regression method.