Effect of sulfide pollution on the stability of the protective film of benzotriazole on copper
By Kharafi, F.M. Al; Abdullah, A.M.; Ghayad, I.M. & Ateya, B.G.
Published in Applied Surface Science
2007
Abstract
Benzotriazole (BTAH) is an excellent inhibitor for the corrosion of copper and many of its alloys in unpolluted media. Protection is attributed to the formation of a film of Cu(I)BTA. Injection of sulfide ions into a benzotriazole inhibited salt water damages the protective Cu(I)BTA film very rapidly, increases the corrosion rate and leads to the formation of copper sulfide. This effect is quite marked at a sulfide concentration as low as 10-5 M (about 0.3 ppm sulfur) in the presence of 10-2 M BTAH, which is 1000-fold greater than that of the sulfide ion. The intensity of sulfide attack increases with its concentration. Prolonged pre-passivation of copper in the BTAH protected medium even at high concentration does not markedly improve the resistance of the protective film to sulfide attack. This finding is contrary to a well-documented phenomenon in unpolluted media where the inhibiting efficiency of BTAH increases with the time of immersion and the concentration of the inhibitor. X-ray photoelectron spectroscopy (XPS) reveals the presence of both sulfide and BTAH on the corroded surface indicating that sulfide attack is localized.