Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application
By Nikam, Vaibhav V.; Reddy, Ramana G.; Collins, Sunniva R.; Williams, Peter C.; Schiroky, Gerhard H. & Henrich, Gary W.
Published in Electrochimica Acta
2008
Abstract
One of the current challenges for application of PEM fuel cell is to find corrosion resistant, electrically conductive, light weight, cost competitive bipolar plate material. Low temperature carburization (LTC) of stainless steels is a novel, patented process by Swagelok Company. This paper addresses the corrosion resistance characteristics of LTC SS 316 for polymer electrolyte membrane fuel cell (PEMFC) bipolar plate applications. Corrosion properties of this material were studied using potentiodynamic and potentiostatic tests in simulated (1 M H2SO4 + 2 ppm HF, 0.5 M H2SO4, pH: 4.0, and 5% HCl + 5% Na2SO4) PEMFC conditions. LTC SS 316 showed excellent corrosion resistance in these conditions compared to SS 316. The mechanism of anodic dissolution and general corrosion of LTC SS 316 was observed to be similar to SS 316 however the extent of LTC SS 316 corrosion was less. LTC SS 316 showed corrosion currents well below 16 μA cm-2 in anodic and cathodic atmospheres under potentiostatic conditions. The potentiostatic current rapidly falls to ∼4.0 and ∼1.5 μA cm-2 under anodic and cathodic conditions, respectively. LTC SS 316 was observed to form a thinner oxide layer as compared to SS 316 after 24 h of potentiostatic testing. Moreover LTC SS 316 lowered the interfacial contact resistance by approximately 24% as compared to SS 316 after corrosion testing. Hence this study clearly states the performance advantage of using LTC SS 316 as bipolar plate material as compared to conventional materials.